Petals
Petals
runs 100B+ language models at home, BitTorrent-style.
This notebook goes over how to use Langchain with Petals.
Install petals
The petals
package is required to use the Petals API. Install petals
using pip3 install petals
.
For Apple Silicon(M1/M2) users please follow this guide https://github.com/bigscience-workshop/petals/issues/147#issuecomment-1365379642 to install petals
!pip3 install petals
Imports
import os
from langchain.chains import LLMChain
from langchain_community.llms import Petals
from langchain_core.prompts import PromptTemplate
Set the Environment API Key
Make sure to get your API key from Huggingface.
from getpass import getpass
HUGGINGFACE_API_KEY = getpass()
········
os.environ["HUGGINGFACE_API_KEY"] = HUGGINGFACE_API_KEY
Create the Petals instance
You can specify different parameters such as the model name, max new tokens, temperature, etc.
# this can take several minutes to download big files!
llm = Petals(model_name="bigscience/bloom-petals")
Downloading: 1%| ▏ | 40.8M/7.19G [00:24<15:44, 7.57MB/s]
Create a Prompt Template
We will create a prompt template for Question and Answer.
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)
Initiate the LLMChain
llm_chain = LLMChain(prompt=prompt, llm=llm)
Run the LLMChain
Provide a question and run the LLMChain.
question = "What NFL team won the Super Bowl in the year Justin Beiber was born?"
llm_chain.run(question)
Related
- LLM conceptual guide
- LLM how-to guides